I am trying an LSTM encoder-decoder network and get an invalid argument error. I have just started working with so I don’t have much experience.
# split a multivariate sequence into samples
def split_sequences(sequences, n_steps_in, n_steps_out):
X, y = list(), list()
for i in range(len(sequences)):
# find the end of this pattern
end_ix = i + n_steps_in
out_end_ix = end_ix + n_steps_out-1
# check if we are beyond the dataset
if out_end_ix > len(sequences):
break
# gather input and output parts of the pattern
seq_x, seq_y = sequences[i:end_ix, :-1], sequences[end_ix-1:out_end_ix, -1]
X.append(seq_x)
y.append(seq_y)
return np.array(X), np.array(y)
#Devide Train and Test Set
train_X,train_y = split_sequences(train ,24,12)
test_X , test_y = split_sequences(test, 24, 12)
print(train_X.shape)
print(train_y.shape)
print(test_X)
# design network
model = Sequential()
model.add(LSTM(100, activation='tanh', input_shape=(n_timesteps, n_features)))
model.add(RepeatVector(n_outputs))
model.add(LSTM(100, activation='tanh',return_sequences=True))
model.add(TimeDistributed(Dense (100 ,activation = 'tanh')))
model.add(TimeDistributed(Dense(12)))
model.compile(optimizer="adam", loss="mse",metrics = ['mape', 'mae', 'mse'])
plot_model(model=model, show_shapes=True)
# fit network
history = model.fit(train_X, train_y, epochs=70, batch_size=16, validation_data=(test_X, test_y), verbose=0, shuffle=False)
# plot history
plt.plot(history.history['loss'], label="train")
plt.plot(history.history['val_loss'], label="test")
plt.legend()
plt.show()
And I keep getting this error which I have no idea what to do about.
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
Detected at node 'sub_1' defined at (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "/usr/local/lib/python3.7/dist-packages/traitlets/config/application.py", line 846, in launch_instance
app.start()
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelapp.py", line 499, in start
self.io_loop.start()
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 132, in start
self.asyncio_loop.run_forever()
File "/usr/lib/python3.7/asyncio/base_events.py", line 541, in run_forever
self._run_once()
File "/usr/lib/python3.7/asyncio/base_events.py", line 1786, in _run_once
handle._run()
File "/usr/lib/python3.7/asyncio/events.py", line 88, in _run
self._context.run(self._callback, *self._args)
File "/usr/local/lib/python3.7/dist-packages/tornado/platform/asyncio.py", line 122, in _handle_events
handler_func(fileobj, events)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 452, in _handle_events
self._handle_recv()
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 481, in _handle_recv
self._run_callback(callback, msg)
File "/usr/local/lib/python3.7/dist-packages/zmq/eventloop/zmqstream.py", line 431, in _run_callback
callback(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tornado/stack_context.py", line 300, in null_wrapper
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 233, in dispatch_shell
handler(stream, idents, msg)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/ipkernel.py", line 208, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "/usr/local/lib/python3.7/dist-packages/ipykernel/zmqshell.py", line 537, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2718, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2822, in run_ast_nodes
if self.run_code(code, result):
File "/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-104-5b6253fe4137>", line 2, in <module>
history = model.fit(train_X, train_y, epochs=70, batch_size=16, validation_data=(test_X, test_y), verbose=0, shuffle=False)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
return fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1384, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 864, in train_step
return self.compute_metrics(x, y, y_pred, sample_weight)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 957, in compute_metrics
self.compiled_metrics.update_state(y, y_pred, sample_weight)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/compile_utils.py", line 459, in update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/metrics_utils.py", line 70, in decorated
update_op = update_state_fn(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/metrics.py", line 178, in update_state_fn
return ag_update_state(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/metrics.py", line 729, in update_state
matches = ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/losses.py", line 1457, in mean_absolute_error
return backend.mean(tf.abs(y_pred - y_true), axis=-1) Node: 'sub_1' required broadcastable shapes [[{{node sub_1}}]] [Op:__inference_train_function_764649]